show simple item record

dc.contributor.advisoranisca, razvan
dc.contributor.authorchlebovec, christopher
dc.date.accessioned2012-11-10t19:06:23z
dc.date.available2012-11-10t19:06:23z
dc.date.created2010-08
dc.date.issued2012-11-10
dc.identifier.urihttp://knowledgecommons.lakeheadu.ca/handle/2453/149
dc.description.abstractthe aim of the thesis is to provide support to the following conjecture, which would provide an isomorphic characterization of a hilbert space in terms of the approximation property: an infinite dimensional banach space x is isomorphic to l₂ if and only if every subspace of l₂ (x) has the approximation property. we show that if x has cotype 2 and the sequence of euclidean distances {dn(x *)}n of x * satisfies dn (x *) ≥ α(log2 n )β for all n ≥ 1 and some absolute constants α > 0 and β > 4, then [cursive l] 2 (x ) contains a subspace without the approximation property.en_us
dc.language.isoen_usen_us
dc.subjectmathematicsen_us
dc.subjectbanach algebrasen_us
dc.titlea subspace of l2(x) without the approximation propertyen_us
dc.typedissertationen_us
etd.degree.namem.sc.en_us
etd.degree.levelmasteren_us
etd.degree.disciplinemathematical sciencesen_us
etd.degree.grantor阿根廷vs墨西哥竞猜 en_us


files in this item

thumbnail

this item appears in the following collection(s)

show simple item record