阿根廷vs墨西哥竞猜
 library logo
    • login
    view item 
    •   knowledge commons home
    • electronic theses and dissertations
    • electronic theses and dissertations from 2009
    • view item
    •   knowledge commons home
    • electronic theses and dissertations
    • electronic theses and dissertations from 2009
    • view item
    javascript is disabled for your browser. some features of this site may not work without it.
    quick search

    browse

    all of knowledge commonscommunities & collectionsby issue dateauthorstitlessubjectsdisciplineadvisorcommittee memberthis collectionby issue dateauthorstitlessubjectsdisciplineadvisorcommittee member

    my account

    login

    unpaved roads’ surface evaluation using unmanned aerial vehicle and deep learning segmentation

    thumbnail
    view/open
    louresl2021m-1a.pdf (29.92mb)
    date
    2021
    author
    lopes amaral loures, luana
    metadata
    show full item record
    abstract
    unpaved roads have a significant role in canada's transportation and service activities, accounting for close to 60% of canada's total public road networks. furthermore, they connect agricultural, mining, recreational areas, and small communities to the nearby towns and businesses. an effective maintenance program for a network of unpaved roads requires a detailed assessment of the road surface’s condition, and such assessment is usually made by visual inspections which can be time-consuming and error prone. the main part of these evaluations aims to identify distresses on the road surface, such as washboarding (corrugation), potholes, and rutting. many research studies have developed methods to automate condition assessment of asphalt roads by combining machine learning algorithms and low-cost unmanned aerial vehicles (uav), but the research on the automated assessment of unpaved roads is very limited. a system has been developed in this study to automate the assessment of unpaved roads by coupling computer vision methods, namely deep convolutional neural networks, and uav-based imaging. this automated system could be used as an alternative method to reduce the need for human effort and possible manual errors, and therefore improve road maintenance programs in remote areas. the performance of the proposed method was evaluated using different test settings, and despite having some challenges, such as false positives, it showed promising outcomes that can contribute to the proposed purpose of this research. this proposed method has a potential for further improvement and the findings can be used as a basis for similar studies.
    uri
    https://knowledgecommons.lakeheadu.ca/handle/2453/4872
    collections
    • electronic theses and dissertations from 2009 [1612]

    阿根廷vs墨西哥竞猜 library
    contact us | send feedback

     

     


    阿根廷vs墨西哥竞猜 library
    contact us | send feedback