阿根廷vs墨西哥竞猜
 library logo
    • login
    view item 
    •   knowledge commons home
    • electronic theses and dissertations
    • electronic theses and dissertations from 2009
    • view item
    •   knowledge commons home
    • electronic theses and dissertations
    • electronic theses and dissertations from 2009
    • view item
    javascript is disabled for your browser. some features of this site may not work without it.
    quick search

    browse

    all of knowledge commonscommunities & collectionsby issue dateauthorstitlessubjectsdisciplineadvisorcommittee memberthis collectionby issue dateauthorstitlessubjectsdisciplineadvisorcommittee member

    my account

    login

    moreau envelopes-based personalized asynchronous federated learning: improving practicality in distributed machine learning

    thumbnail
    view/open
    asada2023m-1a.pdf (922.0kb)
    date
    2023
    author
    as’ad, anwar munther
    metadata
    show full item record
    abstract
    federated learning is a promising approach for training models on distributed data, driven by increasing demand in various industries. however, it faces several challenges, including communication bottlenecks and client data heterogeneity. personalized asynchronous federated learning addresses these challenges by customizing the model for individual users based on their local data while trading model updates asynchronously. in this paper, we propose personalized moreau envelopes-based asynchronous federated learning (apfedme) that combines personalized learning with asynchronous communication and moreau envelopes as clients’ regularized loss functions. our approach uses the moreau envelopes to handle non-convex optimization problems and employs asynchronous updates to improve communication efficiency while mitigating heterogeneity data challenges through a personalized learning environment. we evaluate our approach on several datasets and compare it with pfedme, fedavg, and pfedavg federated learning methods. our experiments show that apfedme outperforms other methods in terms of convergence speed and communication efficiency. then, we mention some well-performing implementations to handle missing data in distributed learning. overall, our work contributes to the development of more effective and efficient federated learning methods that can be applied in various real-world scenarios.
    uri
    https://knowledgecommons.lakeheadu.ca/handle/2453/5178
    collections
    • electronic theses and dissertations from 2009 [1612]

    阿根廷vs墨西哥竞猜 library
    contact us | send feedback

     

     


    阿根廷vs墨西哥竞猜 library
    contact us | send feedback